

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PERIODIC TEST-1, 2025-26 MATHEMATICS (041)

Class: XIIA	Time: 1hr
Date: 01.07.25	Max Marks: 25
Admission no:	Roll no:

General Instructions:

Question 1 to 5 carries ONE mark each. Questions 6 to 7 carries TWO marks each. Questions 08 to 09 carries THREE marks each. Question 10 to 11 carry FIVE mark each.

1.	Let T be the set of all triangles in the Euclidean	n plane,	and let a	a relation	R on T	`be de	fined	as a	ı R b	
	if a is congruent to b, \forall a,b \in T. Then R is									
	a) Poflaviva but not transitiva		b)	trongitizzo	but no	+ 07770	matri			

a) Reflexive but not transitive

b) transitive but not symmetric

c) Equivalence

d) None of these

	2.	Let us define a	a relation	R in	R as	aRb if a	> b.	. Then	R	i	S
--	----	-----------------	------------	------	------	----------	------	--------	---	---	---

- a) An equivalence relation
- b) reflexive, transitive but not symmetric
- c) symmetric, transitive but not reflexive.
- d) neither transitive nor reflexive but symmetric.
- 3. Let $f:R \to R$ be defined by $f(x) = \frac{1}{x}$, $\forall x \in R$. Then f is
 - a) One-one
- b) onto
- c) bijective
- d) f is not defined.
- 4. Which of the following functions from Z into Z are bijection?
 - a) $f(x) = x^3$
- b) f(x) = x + 2
- c) f(x) = 2x+1
- d) x^2+1

5. If
$$3\tan^{-1}x + \cot^{-1}x = \pi$$
, then x equals

- a) 0
- b) 1

c) -1

 $d)\frac{1}{2}$

6. Let
$$R = \{(a, a^3): a \text{ is a prime number less than 5}\}$$
 be a relation. find the range of R .

- 7. Write the principle value of $\tan^{-1} \left[\sin(-\frac{\pi}{2}) \right]$.
- 8. Let f: W \rightarrow W be defined as f (n) = $\begin{cases} n+1, & \text{if } n \text{ is even} \\ n-1, & \text{if } n \text{ is odd} \end{cases}$, show that f is bijective function.
- 9. Find the principle value of $\tan^{-1}(\sqrt{3}) + \cot^{-1}(-\sqrt{3})$.
- 10. If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b): a, b \in Z \text{ and } a b \text{ is divisible by 5}\}$, Prove that R is equivalence relation.
- 11. Show that the function f in A= R- $\left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto function.
